1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

Abiyogenez Nedir? Abiyogenez Bilgileri

Konusu 'Fen ve Teknoloji' forumundadır ve ZeyNoO tarafından 9 Aralık 2011 başlatılmıştır.

  1. ZeyNoO
    Melek

    ZeyNoO ٠•●♥ KuŞ YüreKLi ♥●•٠ AdminE

    Katılım:
    5 Ağustos 2008
    Mesajlar:
    58.480
    Beğenileri:
    5.784
    Ödül Puanları:
    12.080
    Cinsiyet:
    Bayan
    Meslek:
    Muhasebe
    Yer:
    ❤ Şehr-i İstanbul ❤
    Banka:
    3.064 ÇTL
    Abiyogenez Nedir? Abiyogenez Bilgileri

    Doğa bilimlerinde abiyogenez, yaşamın kökeni sorusu, yeryüzünde yaşamın canlı olmayandan nasıl gelişebildiğinin araştırılmasıdır. Bilimsel uzlaşmaya göre abiyogenez 4,4 milyar yıl öncesi ile 2,7 milyar yıl arasında meydana gelmiştir. Bu zaman aralığının başı olan 4,4 milyar yıl öncesi, su buharının sıvılaştığı zamandır.[2] 2,7 milyar yıl öncesi ise, sabit karbon (12C ve 13C ), demir (56Fe, 57Fe, ve 58Fe) ve kükürt (32S, 33S, 34S, ve 36S) izotop oranlarının mineral ve çökeltilerin biyolojik kaynaklı olduğuna[3][4], biyolojik göstergelerin ise fotosenteze[5][6] işaret ettiği zamandır. Bu konu aynı zamanda, Büyük Patlama'dan [7] beri evrenin 13,7 milyar yıllık gelişimi sırasında gerçekleşmiş olabileceği düşünülen, güneş sistemi veya dünya dışından yaşamın kaynaklandığını öne süren panspermia ve dış kaynaklı (eksojen) kuramlarını da içermektedir.

    Yaşamın kökeni çalışmaları biyoloji ve insanın doğal dünyayı anlaması üzerinde çok büyük etkisi olmasına rağmen sınırlı bir araştırma alanıdır. Bu sahadaki ilerlemeler, araştırılan sorunun önemi yüzünden birçok insanın ilgisini çekse de genellikle yavaş ve aralıklıdır. Önerilen bir çok kuram içinde demir-kükürt kuramı (önce metabolizma) ve RNA dünya hipotezi (önce genler) en çok rağbet görenlerdir.

    Siyeh oluşumunda, Glacier Milli Parkı Kambriyen öncesi stromatolitler. 2002'de, UCLA'dan William Schopf bilimsel dergi Nature 'da bu tip jeolojik oluşumların 3.5 milyar yaşında fosilleşmiş alg mikroorganizmaları içerdiğini iddia eden tartışma yaratan bir makale yayımladı.[1] Eğer bu doğru ise, bunlar yeryüzündeki yaşamın bilinen ilk örnekleri olacak.

    Kavramın bilimsel tarihi

    19. yüzyılın başına kadar insanlar yaygın olarak yaşamın canlı olmayan maddeden kaynaklandığına inanıyorlardı.

    Kendiliğinden oluş

    Abiyogenezin klasik anlayışı olan, günümüzde daha açık olarak kendiliğinden oluş olarak bilinen kavrama göre, karmaşık, canlı organizmalar organik maddelerin çürümesi ile meydana gelir; örnek vermek gerekirse fareler depolanmış tahıldan veya kurtçuklar kendiliğinden ette oluşur.

    Aristo'ya göre yaprak bitlerinin bitkilerin üstüne sinen nemden, pirelerin kokuşmuş maddelerden, farelerin kirli tahıldan, timsahların suyun derinliklerindeki çürümüş ağaç kütüklerinden… meydana geldikleri su götürmez bir gerçekti. Onyedinci yüzyılda bu iddialar sorgulanmaya başlandı; mesela Sir Thomas Browne, 1646'da yayımlanan Pesudoxia Epidemica'sı (Genel Kabul Gören Öğretilerin ve Gerçeklerin Sorgulanması alt başlıklı), yanlış inanışlara ve kabaca işlenen hatalara bir saldırıydı. Çıkarımları büyük oranda kabul görmedi; örneğin çağdaşı Alexander Ross şunları yazmıştı: “Bunu (kendiliğinden oluşu) sorgulamak nedeni, algıyı ve deneyimi sorgulamaktır. Eğer şüphesi varsa bırakalım Mısır'a gitsin, orada yerliler için bir felaket olan Nil'in çamurundan doğan tarlalar dolusu fare bulacaktır." [9]

    1546'da fizikçi Girolamo Fracastoro salgın hastalıkların canlı olmayabilecek çok küçük, görünmez parçacıklardan ve “sporlardan” kaynaklanabileceğini kuramsallaştırdı, ancak bu görüş yaygın kabul görnedi. Daha sonra Robert Hooke 1665'te bir mikroorganizmanın ilk çizimlerini yayımladı. Kendisi aynı zamanda mantar örneklerini gözlemlerken keşfettiği hücreyi adlandırmış olmasıyla kayda geçmiştir.

    1676'da Anton van Leeuwenhoek mikroorganizmaları keşfetti; yaptığı çizimlere göre bunların protozoa ve bakteriler olduğu düşünülmüktedir. Bu mikroskobik dünyaya olan ilgiyi ateşledi.[10]

    İlk adım 1688'de bir et parçasına sineklerin yumurtalarını bırakması engellendiğinde larvaların oluşamadığının kanıtlamasıyla İtalyan Francesco Redi tarafından atıldı. Redi, deneyinde ilk başta ağzı açık kavanozların içine et parçaları koydu. Daha sonra bir süre beklediğinde et parçalarının üzerinde larvaların oluştuğunu gördü. Daha sonra sekiz kavanozun içine et koydu ve dördünün ağzını kapattı ve diğer dördünü açık bırakarak bir deney yaptı. Deneyin sonucunda sadece ağzı açık olan kavanozların yani sineklerin yumurtalarını bırakabileceği kavanozların içinde kurtçukların oluştuğunu gördü. Redi'nin karşıtları yani abiyogenezi savunanlar ise dört kavanozun hava almadığı için larvaların oluşmadığını savundular. Redi, bunun üzerine o dört kavanozun ağzını sadece hava alabilecek kadar küçük gözenekleri bulunan bezlerle kapatıp deneyi tekrarladı ve yine larvaların oluşmadığını gözlemledi[11]. Redi'nin bu deneyi biyogenez'i destekler nitelikte bir deney olmuştur. 17. yüzyıldan günümüze en azından bütün yüksek ve gözle görülür organizmalarda, daha önceki kendiliğinden oluş kanaatinin yanlış olduğu açık bir şekilde gösterilmiştir. Alternatif görüş Latince tabiriyle "omne vivum ex ovo" idi: Her canlı daha önce yaşayan bir canlıdan (bir yumurtadan) gelir.

    1768'de Lazzaro Spallanzani mikropların havadan geldiklerini ve kaynatılarak öldürülebileceklerini kanıtladı. Ancak 1861'de Louis Pasteur hücre kuramıni destekleyen dikkatlice planlanmış deneylerle bakteri ve mantarlar gibi organizmaların besleyici ortamlarda canlı olmayan maddelerden kendiliğinden üreyemeyeceğini kanıtladı, böylece hücre teorisini güçlendirdi.

    Darwin ve Pasteur

    19. yüzyılın ortalarında Pasteur ve diğer araştırmacılar canlıların cansız maddeden kendiliğinden üreyemeyeceğini kanıtlayınca, yaşamın doğal yollardan nasıl meydana geldiği sorusu ortaya çıktı.

    Charles Darwin, 1 Şubat 1871'de Joseph Dalton Hooker'a yazdığı mektupta [12] yaşamın ilk kıvılcımının “amonyak ve fosfor tuzları, güneş ışığı, sıcaklık, elektrik akımı vb. unsurların bulunduğu ılık bir su birikintisinde" oluşmuş olabileceğini, "böylece daha karmaşık değişimlere gidebilecek bir protein bileşiğinin kimyasal olarak oluşabileceğini” öne sürmüştür. Bu iddiasını şöyle açıklamaya devam ediyordu: “canlı organizmaların oluşumundan önceki bir olgu olarak artık tespit edilemeyecek şekilde günümüzde bu madde çoktan ortadan kalkmış veya sindirilmiştir.” [13] Diğer bir deyişle yaşamın kökeninin ancak arınık (steril) laboratuar ortamında araştırılabileceğini ifade ediyordu.

    Haldane ve Oparin

    1924'e kadar elle tutulur bir ilerleme kaydedilemedi, ta ki Aleksandr Ivanovich Oparin, yaşamın evrimi için gerekli yapıların oluşmasında ihtiyaç duyulan organik moleküllerin sentezlenmesini atmosferde bulunan oksijenin engellediğini deneyle kanıtlayana[kaynak belirtilmeli] kadar. Oparin, Yeryüzünde Yaşamın Kökeni [14][15] isimli eserinde güneş ışığının etkisinde oksijensiz bir atmosfer ortamında organik moleküllerden bir “ilkel çorba” oluşabileceğini iddia etti. Bunlar giderek daha karmaşık şekillerde biraraya gelip nihayet bir koaservat damlacığının içinde çözünmüş olabilirlerdi. Bu damlalar diğer damlalarla bir kaynaşarak "büyümüş" ve kardeş damlalara bölünerek "üremiş" olabilirdi. Böylece "hücre bütünlüğünü" sağlayan unsurları içeren ilkel bir metabolizma içeren damlacıklar varlıklarını sürdürmüş, diğerleri de yok olmuş olabilirdi. Günümüzdeki birçok yaşam kökeni kuramı Oparin'in düşüncelerini başlangıç noktası olarak alır. Aynı tarihlerde J.B.S. Haldane de –şimdiki okyanuslardan çok farklı olan- yaşam öncesi okyanusların, yaşamın yapı taşları olan organik bileşikleri içeren “sıcak derişik çorbalar” oluşturmuş olabileceklerini öne sürdü. Bu düşünce, biyopoyez veya biyopoez, canlıların canlı olmayan ama kendi kendini üreten maddelerden oluşması işlemi olarak adlandırılmıştır.

    Dünyanın Oluşumundaki Şartlar

    Morse ve MacKenzie[17], okyanusların dünya oluştuktan 200 milyon yıl kadar sonra, yüksek sıcaklıklık (100 °C) indirgeyici bir ortamda meydana gelmiş olabileceğini ve o dönemde 5,8 olan doğal pH'nin hızla nötralleşmekte olduğunu öne sürdüler. Bu iddia Wilde [2] tarafından desteklenmektedir, Batı Avustralya'daki Narryer Dağı'nda değişime uğramış kuvarsitteki zirkon kristallerinin daha önceleri 4,1–4,2 milyar yaşında olduğu sanılırken Wilde bunların yaşını 4.404 milyar yaşında olduğunu göstermiştir.

    Bu şu anlama gelmektedir: okyanuslar ve kıtasal kabuk Dünya'nın oluşumunu takip eden 150 milyon yıl içinde oluştu. Buna rağmen Hadean döneminin iklimi yaşamın oluşması için uygun değildi. Bu dönemde çapı 500 kilometreyi bulan büyüklükteki cisimlerin sık sık dünyaya çarpması muhtemeldi, böyle bir çarpmadan birkaç ay sonra okyanus tamamen buharlaşıp, su buharı ve kaya tozları dünyayı çepeçevre saran bulutlanmaya neden olmuş olabilir. Birkaç aydan sonra bulutların yüksekliği azalmaya başlamış ancak bulut seviyesi sonraki bin yıl boyunca yüksek kalmış olabilir. Daha sonraki iki bin yıl içinde yağmurlar yavaşça bulutların yüksekliğini düşürdüğünden çarpma olayından ancak 3000 yıl sonra okyanuslar orijinal derinliklerine ulaşmıştır[18]. Ay ve iç gezegenleri (Merkür, Mars ve muhtemelen Dünya ve Venüs'ü) 3,8 milyar yıl ile 4,1 milyar yıl arasında çiçek bozuğu gibi yüzeylere sahip hale getiren Geç Dönem Ağır Bombardıman, eğer o zamana kadar yeryüzünde yaşam meydana gelmişse büyük olasılıkla onu ortadan kaldırmıştır.

    Çarpma sonucu meydana gelen yıkıcı çevresel hasarlar arasındaki zaman aralıklarının, kendi kendini üreten proto-organizmaların oluşumu için gereken süreden daha uzun olması gerektiği göz önüne alınırsa, yaşamın kendi kendine oluşabileceği dönem farklı ortamlar için hesaplanabilir. Maher ve Stephenson'un çalışması [19] eğer derin denizde hidrotermal ortam yaşamın kökeni için uygun bir ortam sağlamışsa, abiyogenez 4 ila 4,2 milyar yıl önce meydana gelmiş olabilir. Eğer yeryüzünün yüzeyinde olmuşsa abiyogenez 3,7 ila 4 milyar yıl önce meydana gelmiş olabilir.

    Başka bir araştırma yaşam için daha serin bir başlangıç önermektedir. Stanley Lloyd Miller tarafından yapılan araştırma, sentezlenmek için adenin ve guanin'in suyun donma sıcaklığı, ancak sitozin ve urasil'in kaynama sıcaklıklarına ihtiyaç duyduğunu göstermiştir.

    Araştırmasına dayanarak yaşamın kökeninin dondurucu soğuğa ve patlayan meteoritlere ihtiyaç duyduğunu iddia etmiştir.[21]. 1972 – 1997 arasında Antarktika'da buzda bırakılan amonyak ve siyanürün yedi değişik amino asit ve 11 tip nükleobaz oluşturduğu bulunmuştur[22]. Hauke Twins ise donma koşullarında tek iplikli bir RNA zincirinin kalıp olarak kullanılarak 400 baz uzunluğunda yeni bir RNA moleküllünün oluştuğunu gösteren'in araştırmasına değinilmektedir. Bu yeni RNA ipliği büyüdükçe kalıp molekülüne bağlanmaktadır.[23] Bu kadar düşük sıcaklıkta bu tepkimelerin sıra dışı hızının açıklaması ötektik donmadır. Buz kristali oluşurken, saf halde kalır: yalnızca su molkülleri büyüyen kristale katılır, tuz veya siyanür gibi katışıklar ise dışlanır. Bu katışık maddeler buz içindeki mikroskopik sıvı ceplerde birikir ve bu birikme moleküllerin daha sık birbirleriyle çarpışmasına neden olur.[24]

    Yaşamın erken dönemde belirmesinin kanıtı Batı Grönland'daki Isua süper kabuk kemerinde ve yakınındaki Akilia Adası'ndaki benzer oluşumlarda bulunmaktadır. Kaya oluşumlarına giren karbonun δ13C değeri yaklaşık -5'dir, oysa canlıların 12C'yi tercihli kullanımı nedeniyle biokütlenin δ13C değeri -20 ile -30 arasındadır. Bu izotopik parmak izleri çökeltilerde saklanmıştır ve Mojzis bu tekniği kullanarak yeryüzünde yaşamın yaklaşık olarak 3.85 milyar yıl önce başlamış olduğunu kanıtlamıştır.[25] Lazcano ve Miller (1994) yaşamın evrimleşme hızının orta okyanustaki denizaltı sıcak su kaynakları ekseninde suyun devinimiyla belirlendiğini iddia etmektedir. Bir devinim 10 milyon yıl sürmektedir, böylece üretilen herhangi bir organik bileşik 300 °C'yi geçen sıcaklıklarla ya değişime uğramış ya da imha olmuştur. DNA ve proteinli, 100 kilobaz genomlu ilkel bir heterotroftan 7000 genli flamentöz bir siyanobakteriye evrimleşmesi için 7 milyon yıla ihtiyaç olduğunu tahmin edilmektedir.

    Günümüzdeki modeller

    Yaşamın kökeni için standart bir model yoktur. Ancak günümüzdeki modellerin çoğu, aşağıda kabaca ortaya çıkma sırasında göre sıralanmış, yaşam için gerekli moleküler ve hücresel unsurların keşiflerine dayandırılmıştır:

    1. Makul canlılık öncesi şartlar, amino asitler gibi yaşamın temel basit moleküllerinin (monomerlerinin) oluşmasını sağlar. Bu Miller-Urey deneyi ile 1953'te Stanley Lloyd Miller ve Harold Clayton Urey tarafından gösterilmiştir.

    2. Uygun bir uzunlukta fosfolipidler hücre duvarının temel bir bileşeni olan çift katlı lipit katmanını kendiliğinden oluşturabilir.

    3. Nükleotidlerin polimerizasyonu ile oluşan rastgele RNA molekülleri kendi kendini üreten ribozimlerin oluşmasına neden olmuş olabilir.(RNA dünya hipotezi)

    4. Katalitik etkililik ve çeşitlilik için doğal seçim baskısı, peptidil transfer katalileyebilen (ve dolayıyla küçük proteinlerin oluşturabilen) ribozimler meydana getirebilir, çünkü oligonükleotitler RNA ile birleşip daha iyi katalizürler oluştururlar. Böylece ilk ribozom meydana gelir ve protein sentezi daha yaygınlaşır.

    5. Proteinler katalitik yetenek açısından ribozimlerle rekabet ederek geçmişlerdir ve dolayısıyla dominant biopolimer olmuşlardır. Nükleik asitler başlıca genom kullanımına sınırlanmışlardır.

    Temel biyomoleküllerin kaynağı daha kesinleşmemiş olmakla beraber, yukarıdaki 2. ve 3. adımların önemi ve sıralması kadar tartışmalı değildir. Yaşamın kaynaklandığı düşünülen temel kimyasal maddeler şunlardır:

    1. Metan (CH4),
    2. Amonyak (NH3),
    3. Su (H2O),
    4. Hidrojen sülfür (H2S),
    5. Karbon dioksit (CO2) veya karbonmonoksit (CO), ve
    6. Fosfat (PO43-).

    Moleküler oksijen (O2) ve ozon (O3) ya çok azdı veya yoktu.

    2008 yılı itibarıyla yaşamın gerekli özelliklerini taşıyacak temel bileşikleri kullanarak henüz hiç kimse bir "proto hücre" oluşturabilmiş değildir ("tabandan başlayan yaklaşım"). Bu yönde bir belirti olmayınca açıklamalardaki ayrıntıları eksik kalmaktadır. Ancak, bazı araştırmacılar, mesela Steen Rasmussen Los Alamos Ulusal Laboratuarı'nda ve Jack Szostak Harvard Üniversitesi'nde bu konuda çalışmalarını sürdürmekteler. Diğer araştırmacılar ise "tepeden inme yaklaşım"ın daha verimli olduğunu öne sürmüşlerdir. Craig Venter ve Genom Araştırma Enstitüsü'ndeki bir grubun bu yaklaşım ile mevcut prokaryotların gen sayısını gittikçe azaltmaktalar, böylece yaşam için en az sayıda gereksinimleri belirlemeye çalışmaktalar. Biyolog John Desmond Bernal, bu işlem için Biyopoez terimini geliştirmiş ve yaşamın kökenini açıklamada belirlenebilecek belli sayıda tanımlı "aşama" olduğunu iddia etmektedir:

    * Aşama 1: Biyolojik monomerlerin oluşumu
    * Aşama 2: Biyolojik polimerlerin oluşumu
    * Aşama 3: Moleküllerin hücreye evrimi

    Bernal, Darwinci evrimin çok önceden, 1. ve 2. aşamalar arasında başlamış olabileceğini öne sürmüştür.

    Organik moleküllerin kökeni

    Dünyanın oluşumunda organik moleküllerin üç adet kökeni vardı:

    1. diğer enerji kaynakları (ultraviyole ışığı veya elektrik boşalmaları gibi) aracılığıyla organik sentez (örnek:Miller'ın deneyleri).
    2. dünyadışı nesneler (ör: karbon kondirit);
    3. ani şoklardan kaynaklanan organik sentezler

    Bu kaynaklara dair son zamanlarda yapılan tahminlerde dünyanın erken dönemine ait atmosfer ortamında, 3,5 milyar yıldan önceki zamanda meydana gelen ağır bombardıman sonucu meydana gelen organik madde miktarının diğerleri ile kıyaslanınca çok daha fazla olduğu iddia edilmektedir.[27]

    Miller deneyleri (İlkel Çorba Kuramı)

    1953'te profesör Harold Urey ve asistanı Stanley Lloyd Miller bir deneyle, organik moleküllerin dünyanın oluşum döneminde inorganik maddelerden kendiliğinden oluşabileceğini gösterdi. Günümüzde çok ünlü olan bu deney temel organik monomerlerin oluşumunu sağlamak için ileri derecede indirgenmiş moleküllerden oluşmuş bir gaz karışımı - metan, amonyak ve hidrojen- kullanmıştı.

    Ancak Miller-Urey deneyindeki gaz karışımının dünyanın ilk dönemlerindeki atmosferi ne kadar yansıttığı tartışmalı bir konudur. Diğer daha az indirgenmiş gazlar daha düşük bir birikim ve çeşitlilik göstermektedir. Önceleri yaşam öncesi atmosferde önemli miktarda oksijen olduğu tahmin ediliyordu bu da organik moleküllerin oluşumunu engellerdi; ancak halen bunun öyle olmadığı konusunda fikir birliği vardır. Bakınız Oksijen Felaketi.

    Basit organik moleküller elbette tam anlamıyla işlevsel kendi kendini üreten bir yaşam formundan daha çok uzaktı. Ancak yaşam öncesi hiç bir oluşumun olmadığı bir ortamda bunlar bir araya gelip ve kimyasal evrim ("çorba teorisi") için zengin bir ortamın oluşturmuş olabilirler. Diğer taraftan bu şartlar altında cansız maddelerden oluşan monomerler sayesinde üst düzey polimerlerin kendiliğinden oluşumu basit bir süreç değildir. Deneylerde, yaşamın oluşumu için gerekli temel organik monomerlerin yanı sıra polimerlerin oluşumunu engelleyecek bileşikler de oluşmuştur.

    Bu teorinin çözümsüz bıraktığı en önemli sorunun, “bir proto hücre oluşturmak için yoğun etkileşim içindeyken görece olarak basit organik yapı bloklarının nasıl polimerize olduğu ve daha karmaşık yapılar oluşturdukları” olduğu söylenebilir. Mesela sulu ortamda oligomerlerin/polimerlerin kendi bileşenleri olan monomerlere hidrolizi, tek monomerlerin polimerlere yoğunlaşmasına tercih edilecektir. Aynı zamanda Miller deneyi amino asitlerle tepkimeye girecek veya peptid zincirini kıracak birçok ürün ortaya çıkarmaktadır.

    Derin deniz sıcak su kaynağı teorisi

    Dünyada yaşamın kökenine dair derin deniz sıcak su kaynağı teorisi, gezegeni çevreleyen ay veya gezegenlerin çekim kuvveti gibi mekanizmalar nedeniyle ısınan, kimyasal açıdan zengin sıvıların deniz tabanından yükselmesiyle yaşamın başlamış olabileceğini iddia etmektedir. Sıcak su kaynağından gelen hidrojen sülfit ve hidrojen ile karbon dioksit gibi indirgenmiş gazlar ile uygun bir oksitleyici arasındaki redoks reaksiyonları (tepkimeleri) sonunda kimyasal enerji elde edilebilir.[28].

    Fox deneyleri

    1950'lerde ve 1960'larda Sidney W. Fox, dünyanın ilk oluşum zamanındaki muhtemel koşullar altında peptit yapılarının kendiliğinden oluşumu üzerinde çalıştı. Amino asitlerin kendiliğinden küçük peptitler oluşturabileceğini gösterdi. Bu amino asitler ve küçük peptitler mikroküreler olarak adlandırılan kapalı küresel yapılar oluşturmuş olabilirdi.[29]

    Eigen hipotezi

    1970'lerin başında yaşamın kökeni sorunu için Max Planck Biyofizik Kimya Enstitüsü'nden (Max Planck Institut für biophysikalische Chemie) Manfred Eigen ve Peter Schuster konuya eğildiler. Yaşam öncesi çorbada moleküler kaos ve kendi kendini üreten hiper daire arasındaki geçiş süreçlerini incelediler.[30]

    Bir hiper dairede, bilgi bir depolama sistemi (muhtemelen RNA) bir enzim üretir, bu da başka bir bilgi sisteminin olşumunu katalizler, bu işlem birçok kere tekrarlandıktan sonra en sonuncu ürün ilk bilgi sisteminin oluşumunu sağlar. Matematiksel olarak hiper dairelerin, doğal seçim ekseninde bir çeşit Darwinci evrime uğrayan quasispecies'ler (Türkçe'de türümsü öneriliyor) meydana getirebileceğini göstermişlerdir. Hiper daire teorisine önemli bir destek, RNA'nın bazı durumlarda kendi kimyasal tepkimelerini katalizleyebilme yeteneğine sahip olan ribozimler oluşturabilmesinin keşfedilmesiyle geldi.[31] Ancak bu tepkimeler (uzun bir RNA molekülünün daha kısalaştığı) kendi kendine kısaltmalarla ve herhangi bir yararlı proteini kodlama yeteneğinden yoksun daha nadir küçük eklemelerle sınırlıdır. Hiper daire teorisini zayıflatan bir diğer nokta, söz konusu RNA moleküllerinin nükleotit gibi biyokimyasallara gerek duyacağı, Miller-Urey deneyinin gerçekleştiği şartlarda ise bu kompleks moleküllerin oluşmadığıdır.

    Wächtershäuser'ın hipotezi

    İçinden çıkılmaz bir soruna dönen polimerizasyon problemine getirilen yanıtlardan birisi ise 1980'lerde Günter Wächtershäuser'ın demir-kükürt kuramı oldu. Bu teoriye göre teorisyen (biyo)kimyasal patikaların yaşamın evriminin temeli olduğunu öne sürdü. Bugünün basit gaz bileşiklerinden organik yapı bloklarının sentezi için alternatif yollar sağlayan en eski reaksiyonlardan bugünün biyokimyasına kadar götüren tutarlı bir sistem sundu. Dış enerji kaynaklarına (yıldırım veya mor ötesi ışınlara) ihtiyaç duyan klasik Miller deneylerinin aksine "Wächtershäuser sistemleri" kendi içinden enerji kaynaklarını içermektedir: demir sülfürleri ve diğer mineraller (örneğin pirit). Bu metal sülfürlerin redoks reaksiyonlarından ortaya çıkan enerji sadece organik moleküllerin sentezi için değil, aynı zamanda oligomerlerin ve polimerlerin sentezi için de müsaittir. Yapılan deneyde az bir miktar dipeptid (%0,4 ten % 12,4'e kadar) ve az bir miktar tripeptid (%0.10) üretildi. Ancak yazarlar aynı zamanda şu notu eklediler: “aynı benzer koşullar altında dipeptitler hızlıca hidrolize edildi (suyla kesime uğradılar)” [32]

    Radyoaktif sahil teorisi

    Washington Üniversitesi, Seattle'dan Zachary Adam[33] şimdikinden çok daha yakında olan bir aydan kaynaklanan gelgitlerin uranyumun radyoaktif taneciklerinin ve diğer radyoaktif elementlerin o zaman varolan kıyılarda suların üst seviyelerinde yoğunlaşmasına neden olabileceğini, bunların buralarda yaşamı oluşturan yapı blokları üretmiş olabileceğini iddia etmektedir. Astrobiyoloji dergisinin cilt 7 sayfa 852'deki bilgisayar modellemesine göre, benzer radyoaktif maddelerin Gabon'da Oklo uranyum maden yatağında belirlendiği gibi benzer şekilde kendi kendini sürdüren nükleer reaksiyonlar gösterebilmektedir. Bu tip radyoaktif sahil kumu, sudaki asetonitrilden amino asit ve şeker gibi organik moleküller üretmeye yetecek enerji sağlamaktadır. Aynı zamanda radyoaktif monazit, kum tanecikleri arasındaki ortama çözünür fosfat salarak onun biyolojik olarak "erişilebilir" kılar. Böylece amino asitler, şekerler ve çözünür fosfatlar eş zamanlı olarak bu teoriye göre üretilebilirler. Radyoaktif aktinitler organik-metalik komplekslerin (karmaşıkların) içinde yer almış olabilir. Bu kompleksler yaşam süreçlerinin erken katalizörleri olmuş olabilir. Aberdeen Üniversitesi'nden John Parnell, böylesi bir sürecin ıslak kayalık herhangi bir gezegenin ilk dönemlerinde yaşamın potasının bir parçasını oluşturabileceğini düşünmektedir; yeter ki radyoaktif mineralleri yüzeye çıkaran kıtasal levha hareketleri sistemini üretecek kadar büyük olsun bu gezegen. Dünyanın ilk oluşum dönemlerinde gezegenin küçük "levhacıktan" oluştuğu düşünüldüğü için bu durum bu süreçler için uygun bir ortam mevcuttu.
     

Sayfayı Paylaş