Cantor Teoremi

Suskun

V.I.P
V.I.P
Katılım
16 Mrt 2009
Mesajlar
23,140
Beğeniler
322
Şehir
Türkiye
#1
Cantor Teoremi
Cantor Teoremi, kümeler teorisinin başlıca teoremlerindendir. Teorem; boş olmayan herhangi bir X kümesinin kuvvet kümesinin kardinalitesinin, X kümesinin kardinalitesinden büyük olduğunu söyler. P(X) ile kuvvet kümesi gösterilirse, teoreme göre X kümesi ile P(X) arasında birebir eşleme yapılamaz.

Georg Cantor bu teoremi 1891 yılında ispatlamıştır.

İspat



Sonlu kümeler için teoremin doğru olduğu açıkça görülmektedir:
Bir X kümesinin n tane elemanı olduğunu kabul edelim. Bu durumda X kümesinin kuvvet kümesi 2n elemana sahip olacaktır. Her n doğal sayısı için, n < 2n olduğuna göre, X ile P(X) arasında birebir eşleme yapılamaz.
O halde sonlu sayıda elemana sahip kümeler için Cantor Teoremi doğrudur.

Şimdi sonsuz kümeler için teoremi ele alalım:
X ile Y iki küme olsun ve X kümesinin kardinalitesi Y kümesinin kardinalitesinden küçük olsun. Öyleyse X kümesinden Y kümesine birebir bir fonksiyon vardır, ancak örten bir fonksiyon yoktur. (Y kümesinden X kümesine birebir bir fonksiyon yoktur.)

f birebir ve örten bir fonksiyon olsun, öyle ki;

f: X → P(X)

x → {x}

Şimdi A kümesini, X in bir alt kümesi olarak alalım ve A = {x ∈ X : x ∉ f(x)} olsun.
A ∈ P(X) olduğuna göre; X te öyle bir a elemanı vardır ki f(a) = A dır. Bu durumda a ∈ A ya da a ∉ A olmalıdır.

Eğer a ∈ A ise; A kümesinin tanımından dolayı a ∉ f(a) olmalıdır. f(a) = A olduğuna göre, a ∉ A dır. Bu a ∈ A ile çelişir.
Eğer a ∉ A ise; A kümesinin tanımından dolayı a ∈ f(a) olmalıdır. f(a) = A olduğuna göre, a ∈ A dır. Bu a ∉ A ile çelişir.

Bu durumda f(a) = A koşulunu sağlayan herhangi bir a yoktur ve A kümesi f fonkiyonunun görüntüsünde değildir. Yani X ten P(X) e örten bir fonksiyon yoktur.
O halde, Car(X) < Car(P(X)) tir.
 
Ekleyen Benzer konular Kategori Cevaplar Tarih
ZeyNoO Ekonomi 0
ZeyNoO Fen ve Teknoloji 0
~meLek~ Mucitler 0
Suskun Kitap Özetleri 0
Suskun Matematik & Geometri 0

Benzer konular

Top