1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

Cantor Teoremi

Konusu 'Matematik & Geometri' forumundadır ve Suskun tarafından 26 Eylül 2011 başlatılmıştır.

  1. Suskun

    Suskun V.I.P V.I.P

    Katılım:
    16 Mart 2009
    Mesajlar:
    23.242
    Beğenileri:
    276
    Ödül Puanları:
    6.230
    Yer:
    Türkiye
    Banka:
    2.052 ÇTL
    Cantor Teoremi
    Cantor Teoremi, kümeler teorisinin başlıca teoremlerindendir. Teorem; boş olmayan herhangi bir X kümesinin kuvvet kümesinin kardinalitesinin, X kümesinin kardinalitesinden büyük olduğunu söyler. P(X) ile kuvvet kümesi gösterilirse, teoreme göre X kümesi ile P(X) arasında birebir eşleme yapılamaz.

    Georg Cantor bu teoremi 1891 yılında ispatlamıştır.

    İspat



    Sonlu kümeler için teoremin doğru olduğu açıkça görülmektedir:
    Bir X kümesinin n tane elemanı olduğunu kabul edelim. Bu durumda X kümesinin kuvvet kümesi 2n elemana sahip olacaktır. Her n doğal sayısı için, n < 2n olduğuna göre, X ile P(X) arasında birebir eşleme yapılamaz.
    O halde sonlu sayıda elemana sahip kümeler için Cantor Teoremi doğrudur.

    Şimdi sonsuz kümeler için teoremi ele alalım:
    X ile Y iki küme olsun ve X kümesinin kardinalitesi Y kümesinin kardinalitesinden küçük olsun. Öyleyse X kümesinden Y kümesine birebir bir fonksiyon vardır, ancak örten bir fonksiyon yoktur. (Y kümesinden X kümesine birebir bir fonksiyon yoktur.)

    f birebir ve örten bir fonksiyon olsun, öyle ki;

    f: X → P(X)

    x → {x}

    Şimdi A kümesini, X in bir alt kümesi olarak alalım ve A = {x ∈ X : x ∉ f(x)} olsun.
    A ∈ P(X) olduğuna göre; X te öyle bir a elemanı vardır ki f(a) = A dır. Bu durumda a ∈ A ya da a ∉ A olmalıdır.

    Eğer a ∈ A ise; A kümesinin tanımından dolayı a ∉ f(a) olmalıdır. f(a) = A olduğuna göre, a ∉ A dır. Bu a ∈ A ile çelişir.
    Eğer a ∉ A ise; A kümesinin tanımından dolayı a ∈ f(a) olmalıdır. f(a) = A olduğuna göre, a ∈ A dır. Bu a ∉ A ile çelişir.

    Bu durumda f(a) = A koşulunu sağlayan herhangi bir a yoktur ve A kümesi f fonkiyonunun görüntüsünde değildir. Yani X ten P(X) e örten bir fonksiyon yoktur.
    O halde, Car(X) < Car(P(X)) tir.
     

Sayfayı Paylaş