1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

Fraktal Geometri - Kaosun Resmi

Konusu 'Gerekli Bilgiler' forumundadır ve Suskun tarafından 21 Haziran 2011 başlatılmıştır.

  1. Suskun

    Suskun V.I.P V.I.P

    Katılım:
    16 Mart 2009
    Mesajlar:
    23.242
    Beğenileri:
    276
    Ödül Puanları:
    6.230
    Yer:
    Türkiye
    Banka:
    2.052 ÇTL
    Fraktal Geometri - Kaosun Resmi

    [​IMG]
    Her şey, Benoit Mandelbrot’un kafasında oluşan ve aslında basit gibi görünen bir soru ile başladı: İngiltere’nin kıyı uzunluğu ne kadardır? Yanıtı bulmak için yapılabilecek ilk şey, ölçeği belli bir harita bulduktan sonra, buradan kıyı şeridinin uzunluğunu, sözgelimi bir iple ölçmek ve sonucu haritanın ölçeğiyle çarparak, kıyı uzunluğunu hesaplamak olabilir. Peki, kıyı şeridinin uzunluğu ‘gerçekte’ ne kadardır? Kıyı şeridinin uçaktan çekilmiş bir dizi fotoğrafı ile daha doğru bir ölçüm yapabilirsiniz; şüphesiz bu değer, harita üzerinde hesaplanandan biraz daha büyük çıkacaktır. Biraz daha ileri gidip, tüm kıyıyı adım adım ölçtüğünüzü düşünelim; bu durumda ne kadarlık bir uzunluk hesaplayabilirsiniz?

    Peki ya tüm uzunluğu milimetrik bir cetvelle ölçebildiğinizi düşünün; hatta moleküler boyulara kadar uzanan hassas bir uzunluk ölçümü yapabildiğinizi… Sonuçta, ölçümlerinizi hassaslaştırdıkça, kıyı uzunluğunun sonsuza gittiğini farkedeceksiniz. Sonlu bir kara parçasının sınırları, aslında sonsuz uzunluktadır!

    Bu basit ve çarpıcı sonuç, Benoit Mandelbrot gibi bir matematikçinin elinde, ‘fraktal geometri’ dediğimiz yeni bir matematik dalının temellerinin atılmasını sağladı. Mandelbrot, tabiattaki biçimlerin matematiğini keşfeden ve buna latince ‘kırıklı’ anlamına gelen ‘fractus’ sözünden türettiği ‘fractal’ adını veren kişidir. Kendisinin tanımladığı (yahut kendi ifadesiyle, keşfettiği) ünlü ‘Mandelbrot Kümesi’, belki de dünyanın en meşhur geometrik şekillerinden birisidir.
    [​IMG]
    [Mandelbrot kümesi en sade hali ile]

    Mandelbrot aslında fraktal dünyanın ilk kaşifi değildir. Ondan neredeyse bir yüzyıl kadar önce matematikçi Gaston Julia, 1. DÜnya Savaşında yaralanmasının ardından hastanede geçirdiği uzun ve acılı günlerde, bu gün Julia kümesi olarak bildiğimiz ilk fraktal geometrik kumeyi tanımlamıştır.

    [​IMG]
    [Gaston julia ve kendi adıyla anılan Julia kümesi'nin bilgisayarlarca üretilmiş hali]

    Elbette Julia, defalarca tekrarlayan işlemleri hızlıca gerçekleştirebilen bigisayarların icadından yıllar önce, kuramsal olarak keşfettiği bu geometrik biçimi tam olarak görme şansına sahip değildi. Defterlerinin arkasına yaptığı bir kaç çizimle fraktal geomtrinin ilk esaslarını ortaya koymuş, fakat bu yeni geometrinin harika dünyasına tam olarak tanıklık edemeden bu dünyadan ayrılmıştı. Yıllar sonra Mandelbrot’un, Julia kümesinin de türetilebildiği ana fraktal biçim olan o meşhur Mandelbrot Kümesi’ni keşfi de zaten bilgisayarların bu gün bildiğimiz şekliyle kullanıma girmesi sonucu mümkün oldu. Çünkü fraktal geometri milyonlarca kez tekrarlanan işlemlerle elde edilebilen çok karmaşık geometrik biçimlerden oluşur ve bunları elle yapmanın imkansızlığı ancak bilgisayarlar hayatımza girdikten sonra anlaşılabilmiştir.

    [​IMG]
    [Mandelbrot kümesinin bilgisayarda renklendirilmiş bir türevi]

    Fraktal geometri, bildiğimiz Euklid (Öklid) geometrisinden oldukça farklıdır. Euklid geometrisi, okullarda okuduğumuz, üniversite sınavlarında karşımıza çıkan sıfır, bir iki ve üç boyutlu geometrik şekillerle ilgilenir. Bu şekillerin genellikle gerek dünyada tam olarak bir kaşılıkları yoktur ve çoğunlukla idealleştirmelerden ibarettirler (gerçek dünyada kalınıksız bir kağıt, yahut boyutsuz bir
    nokta görme olasılığımız yoktur).


    [​IMG]
    Mandelbrot’un fraktalleri ise, “kesirli” boyutlara (fractal dimensions) sahip olmaları açısından, geleneksel geometriden kökten farklı bir yapı sergiler. Matematiğe çok girmeden bunu şöyle örneklendirebiliriz: Elinizde bir sayfa kağıt olduğunu ve bunun iki boyutlu olduğunu düşünün (aslında kağıt, kalınlığı da olan üç boyutlu bir nesnedir ama, şimdilik kalınlıksız iki boyutlu bir yüzey düşünüyoruz). Kağıdı elinizde o kadar çok buruşturup sıkıştırıyorsunuz ki, artık son derece karmaşık hale gelmiş bu iki boyutlu yüzeyi ‘iki boyutlu’ olarak nitelemek gittikçe imkansızlaşıyor. Üç boyutlu olduğunu da iddia edemiyorsunuz, zira elinizdeki ne kadar buruşmuş olursa olsun, iki boyutlu bir yüzeydir aslında. Dolayısıyla, buruşma miktarı arttıkça, 2.05, 2.28, 2.4 gibi kesirli boyutlara sahip bir yüzey şekli elde etmeye başlarsınız. İşte fraktallerdeki kesirli boyut kavramı da buna benzer bir karmaşıklığın neticesinde ortaya çıkar. Aslında doğada hakim olan geometri de işte bu ‘fraktal geometri’dir…

    [​IMG]
    Doğadaki biçimler gerçekten de geleneksel geometrinin bize öğrettiğinden çok farklıdır. Geleneksel (Euklid’çi) geometri daha ziyade idealize edilmiş soyutlamalardan oluşurken, tabiattaki biçimler çok daha karmaşıktırlar. Yerküreyi 6-7 kez dolaşabilecek kan damarlarını ve bir tenis kortu kadar alan kaplayan akciğer hava keseciklerini bu küçücük vücudumuza; açıldığında 2 metreyi aşkın bir uzunluğa erişen DNA molekülümüzü 100 trilyon hücremizin her birindeki bir kaç mikrometrelik (milimetrenin binde biri) çekirdeğin içine paketlenmesinin ardında, işte bu ‘fraktal’ kurallar yatmaktadır…

    Fraktal özelliklere sahip bir geometrik şekli evinizde kendi başınıza elde etmenin bu gün için en kolay yolu, internette rahatlıkla bulunabilen hazır bilgisayar programlarından birisini kullanmaktır (örneğin: Fractal Explorer). Zira her ne kadar basit olursa olsun, bir ‘fraktal’ ortaya çıkarmak, matematiksel bir dizi işlem serisi (iterasyonlar) gerektirir ki, bu tekrarlayan işlem serileri, tam da bilgisayarlara göre bir iştir. Örneğin Mandelbrot Kümesi aslında, ‘karmaşık sayılar’ı da içeren ve kendi sonucunu her tekrarda ‘giriş verisi’ olarak kullanan bir iterasyon, yani tekrar tekrar hesaplama işlemidir. Bu hesaplama sonucu elde edilen kapalı noktalar kümesi, alanı sonlu, fakat kenar uzunluğu sonsuz bir küme olarak tüm fraktallerin –tabir yerindeyse- atasıdır.

    Fraktallerin bir başka çarpıcı özelliği, doğada çokça rastladığımız ‘kendine benzeme’ (self similarity) özelliğidir. Herhangi bir iterasyon dizgesi ile oluşturulan bir fraktal biçim, aynı matematiksel formül çekirdeğinin defalarca üst üste tekrarlanması ile ortaya çıktığından, ana kümenin şekli, küme kenarlarının mikroskobik detaylarında dahi benzer görünüm ve biçimlerde tekrarlanır.


    [Mandelbrot kümesinin inanılmaz karmaşıklığına bir örnek]
    Tabiatta da bu durumla sık sık karşılaşırız: Örneğin ağaçların bir çok tipinde, dal ve köklerdeki saçaklanma biçimleriyle; dalların yan dallara ayrılma biçimlerinin, yaprakların çıkış noktalarının ve yapraklar üzerindeki damarların dallanış biçimlerinin hep birbirine benzer bir kalıp izlediğine belki de daha önce dikkat etmişsinizdir. Daha çarpıcı bir örnek olarak, atom-altı düzeyi de düşünebiliriz. Bu düzeyde ulaştığımız mikro-alem, aynen uzay boşluğu gibi karanlık, nisbi olarak korkunç mesafelerle birbirlerinden ayrılmış bileşenlerden (elektronlar – protonlar vb.) oluşan bir boşluktur ve atomun ardında, yeni bir ‘uzay boşluğu’, farklı ölçeklerle de olsa bizi bekler gibidir! İşte bu özellikler, fraktal geometrinin sadece ağlenceli bir oyun olmaktan ziyade, hayatın kendisini daha iyi anlamamızda yardımcı bir araç olarak kullanılması konusunda bizi defaatle ikaz ediyor…

    Brokoli
    [​IMG]

    [​IMG]

    [​IMG]

    [Doğadaki bazı fraktal biçimler]
    [Bazı doğal yapıların, fraktal geometri biçimleriyle benzerliği şaşırtıcı düzeydedir]

    [​IMG]
    [​IMG]
    Yapısındaki bıktırıcı ve binlerce tekrara dayalı matematiksel altyapıya rağmen fraktal geometri, özellikle günümüz yazılım teknolojisinin nimetleriyle de birleşince artık oldukça yaygınlaşmış durumda. Günümüzde fraktalleri oluşturmak için uzmanlığa gerek olmadığı gibi, güzelliklerini ve bize anlattıklarını anlayabilmek/takdir edebilmek için matematik dehası olmak gerekmiyor. Tek şart, insanî bir merak ve iştiyak sahibi olmak; hepsi o kadar.. Bana sorarsanız, hemen bir fraktal programı edinip kurcalamaya başlayın; karşınıza çıkan alem karşısında şaşkınlığınızı uzun süre gizleyebileceğinizi sanmıyorum…

    FRAKTAL GEOMETRİNİN PRATİK FAYDALARI VAR MI?

    Bu özel geometri dalı ilk ortaya çıktığı yıllardan beri araştırıcıların hızla ilgisini çeken bir bilim alanı olmaya devam ediyor. Bu ilginin en önemli nedeni, fraktallarla doğal biçimler arasındaki benzerliğin sadece görsel bir benzeşimin çok ötesinde olmasıdır aslında. Doğadaki bir çok biçimin bazı basit fraktal kurallarla kısmen yahut tamamen ifade edilebiliyor olması, bu basit kurallarla doğal biçimlere benzer yapıların bilgisayarlarca oluşturulabilmeleri, araştırıcıları bu alanın derinliklerine doğru kafa yormaya sevkediyor. Doğadaki biçimlerin oluşumlarını inceleyen morfogenez biliminin şu anda en önemli ayaklarından birisini, fraktal geometri ile doğadaki biçimler arasındaki beznerlikleri araştırarak, özellikle canlılardaki karmaşık biçim oluşumlarının şifresini çözebilme çabası oluşturmakta.



    [​IMG]
    Fraktal geometri ayrıca fraktal analiz olarak adlandırılan yeni bir ölçüm yöntemleri dizisinin de bilim gündemine girmesini sağladı. Sadece biçimlerin değil, süreçlerin de karmaşıklıklarını ölçmek için kullanılan fraktal analiz ve dekompozisyon teknikleri, doğada karşımıza çıkan biçimlerin ve olayların karmaşıklık düzeylerini sayısal halde izleyip inceleyebilmek için bize yeni yöntemler sunmakta. Örneğin, mikroskop altında incelediğimiz, hücreler gibi doku bileşenlerinin çeşitli nedenlerle uğradıkları biçimsel değişiklikleri artık bir de “fraktal boyutlarını” hesaplayarak sayısallaştırabiliyoruz. Veya beyin aktivitesi sırasında kaydedilen elektroensefalogram (EEG) sinyallerinin benzer yöntemlerle analiz edilmesi, bize kaydedilen aktivitelerin karmaşıklık düzeyi ve altında yatan nedenler konusunda yeğyeni fikirler sunuyor. Kısacası, fraktal geometri bu gün, her alanda kullanılan ve gelecekte gittikçe de gözde hale gelecek bir alan olma özelliğini koruyor.

    * * *

    Fraktal alemdeki kişisel maceramın bana bir kez daha hatırlattığı bir gerçek var: Bu kâinat öyle bir –fraktal– kitap ki, her bir harfinde okunası nice ciltler yazılıp paketlenmiş.. Bizler bu gün, bilimin de katkısıyla bunu çok daha iyi anlıyoruz.

    Artık elimizde, bu kompleks kitaptan daha fazla anlam çıkarabilecek bilimsel yöntemlerimiz ve yeni bakış açılarımız var. Dolayısıyla artık bize düşen, okuyabildiğimiz kadar okumak…

    Alıntıdır...
     

Sayfayı Paylaş