1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

logaritma

Konusu 'Matematik & Geometri' forumundadır ve -araz- tarafından 26 Eylül 2012 başlatılmıştır.

  1. -araz-
    Ayyaş

    -araz- EYVALLAH... V.I.P

    Katılım:
    24 Aralık 2011
    Mesajlar:
    4.727
    Beğenileri:
    368
    Ödül Puanları:
    3.980
    Banka:
    439 ÇTL
    b = ax ifadesinde x değerini bulma işlemine logaritma denir.
    ax = b ise x= logab dir.

    Örnekler:


    log3x = 5 ise x = 35 = 243'tür.

    log6216 = x ise x = 3 bulunur.

    Logaritma Fonksiyonunun Özellikleri


    loga(m.n) = logam + logan dir.
    (Çarpımın logaritması, çarpanların logaritmalarının toplamına eşittir.)


    loga(m / n) = logam - logan dir.
    (Bölümün logaritması, payın logaritmasından paydanın logaritmasının farkına eşittir.)


    loga1 = 0.
    (1 sayısının her tabandaki logaritması, a0=1 eşitliğinden dolayı sıfırdır.)


    logaa = 1
    (Tabanın logaritması, a1=a eşitliğinden dolayı 1 dir.)


    logapn = n.logap


    logap = logcp / logca dır.
    (Taban Değiştirme Kuralı)


    alogap = p

    Örnekler:


    log(2x + 12) = 1 + log(x - 2) denklemini sağlayan x değeri nedir?

    log(2x + 12) = log10 + log(x - 2)
    log(2x + 12) = log[10.(x - 2)]
    2x + 12 = 10x - 20
    x = 4 bulunur.


    (log2x)2 - 6log2x + 8 = 0 denkleminin çözüm kümesi nedir?

    log2x = t diyelim.
    t2 - 6t + 8 = 0 olur.
    Bu denklemin kökleri t1 = 2 ve t2 = 4 tür.
    Buradan log2x = 2 veya log2x = 4 olur.
    O halde x değerleri 22 = 4 ve 24 = 16 olup
    Ç.K = {4,16} bulunur.
     

Sayfayı Paylaş