1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

Pisagor Teoremi-Pisagor bağıntısı görsel açıklaması

Konusu 'Matematik & Geometri' forumundadır ve Suskun tarafından 13 Nisan 2010 başlatılmıştır.

  1. Suskun

    Suskun V.I.P V.I.P

    Katılım:
    16 Mart 2009
    Mesajlar:
    23.242
    Beğenileri:
    276
    Ödül Puanları:
    6.230
    Yer:
    Türkiye
    Banka:
    2.052 ÇTL
    Pisagor Teoremi Animasyonu
    [​IMG]

    Pisagor teoremine göre bir dik üçgende dik kenarın yani hipotenüsün bir kenarını oluşturduğu karenin alanı diğer iki dik kenarın birer kenar olarak oluşturdukları karelerin alanları toplamına eşittir.:
    [​IMG],
    c uzunluğu hipotenüstür. a ve b uzunlukları ise dik kenarlardır. Her kenardan birer kare oluşturulur. Bu karelerin alanları, kare alan formülüne dayalı olarak [​IMG], şeklinde sıralanır. Böylece üç karenin köşelerinin birleşiminden oluşan bir dik üçgen oluşturulur. Oluşan üçgenin dik köşesinden hipotenüsün oluşturduğu karenin, hipotenüse paralel olan kenara indirilen dikme ile üçgen içerisinde Öklid bağıntısı kurulur. (öklid bağıntısı benzerlikten ispatlanabilmektedir.) Öklide göre
    [​IMG]
    yani, dik kenarlardan birinin karesi, dik açıdan hipotenüse indirilen dikmenin ayırdığı parçalardan kendisine komşu olan tarafın uzunluğu ile hipotenüsün tamamının çarpımına eşittir. Bu durumda
    [​IMG]
    olacaktır. Yani a kenarına ait karenin alanı, hipotenüse ait alanın dik açıdan indirilen dikmeyle ikiye ayırdığı alanlardan kendisine komşu olan alana eşit olacaktır. Bu durumu diğer kenar için de düşünürüz.

    [​IMG]

    [​IMG]

    [​IMG], olacaktır. Bunu takiben,

    [​IMG],

    [​IMG],

    p+q=c ,

    [​IMG],

    [​IMG],

    olacaktır.

    Matematikte, Pisagor Teoremi, Öklid geometrisinde bir dik üçgenin 3 kenarı için bir bağıntıdır. Bilinen en eski matematiksel teoremlerden biridir. Teorem sonradan İÖ 6. YY'da Yunan filozof ve matematikçi Pisagor'a atfen isimlendirilmiş ise de, Hindu, Yunan, Çinli ve Babilli matematikçiler teoremin unsurlarını, o yaşamadan önce bilmekteydiler.

    Pisagor teoreminin bilinen ilk ispatı Öklid'in Elementler eserinde bulunabilir.

    Sayısal Örnekler[kaynağı değiştir]

    En yaygın olarak karşılaşılan örneklerden biri "3-4-5" üçgenidir. [​IMG],

    Bu, komşu kenarları sırasıyla 3 birim, 4 birim ve karşı kenarı 5 birim olan bir dik üçgeni temsil eder.

    Diğer örnekleri ise 5-12-13, 8-15-17, 7-24-25, 9-40-41 \!\,...

    Pisagor teoremi bir dik açı oluşturmak kolaydır.

    Şöyle ki:

    1) Yeterli uzunlukta bir halatı(ya da ipliği) eşit 12 parçaya ayıracak şekilde işaretleyin.

    2) Bu işaretlerden 3. ve 5. (3+5) noktalari sabitleyip, ipin açıkta kalan iki ucunu (gergin olacak şekilde) birleştirin.

    3) 3. işaretin bulunduğu noktada bir dik açı elde edersiniz.

    Bu yöntemin geçmişte tarım alanlarının paylaşılması, arazi sınırlarının belirlenmesi gibi alanlarda kullanıldığı bilinmektedir...
     
    Son düzenleyen: Moderatör: 27 Eylül 2014

Sayfayı Paylaş