1. * 5651 Sayılı Kanun'a göre TÜM ÜYELERİMİZ yaptıkları paylaşımlardan sorumludur.
    * Telif hakkına konu olan eserlerin yasal olmayan şekilde paylaşıldığını ve yasal haklarının çiğnendiğini düşünen hak sahiplerinin İLETİŞİM bölümünden bize ulaşmaları durumunda ilgili şikayet incelenip gereği 1 (bir) hafta içinde gereği yapılacaktır.
    E-posta adresimiz

Prizmalarda Alan ve Hacim bağlantıları

Konusu 'BilgiBANK' forumundadır ve Suskun tarafından 2 Nisan 2011 başlatılmıştır.

  1. Suskun

    Suskun V.I.P V.I.P

    Katılım:
    16 Mart 2009
    Mesajlar:
    23.242
    Beğenileri:
    276
    Ödül Puanları:
    6.230
    Yer:
    Türkiye
    Banka:
    2.052 ÇTL


    Alt ve üst tabanları paralel eş şekillerden oluşan cisimlere prizma denir. Yan yüzeyleri taban düzlemine dik olan prizmalara dik prizma adı verilir.
    Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir.

    [AA'], [BB'], [CC'], [DD']
    yanal ayrıtlardır.

    Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir.
    Cismin yüksekliğine h dersek
    h = |AA'| = |BB'| = |CC'| = |DD'| olur.

    Prizmanın Hacmi
    Hacim=Taban Alanı x Yükseklik
    Dik prizmanın taban biçimi nasıl olursa olsun, yanal yüzeyi daima bir dikdörtgen olur. Yanal yüzü oluşturan dikdörtgenin alt kenarı tabanın çevresi kadardır. Diğer kenarı ise h yüksekliği kadar olur.

    Yanal Alan = Taban çevresi x Yükseklik Bütün dik prizmaların yanal alanı taban çevresi ile yüksekliğin çarpımıdır. Bütün Alan ise yanal alan ile iki taban alanının toplamıdır.

    Tüm Alan = Yanal Alan + 2. Taban Alanı 1. Dikdörtgenler Prizması
    Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegeni denir.

    Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları
    |AC'| = |A'C| = |BD'| = |B'D| = e (cisim köşegeni)
    |BD| = f (Yüzey köşegeni) olsun. Bu durumda

    Hacim = a.b.c
    Alan =2(ab+bc+ac)
    Alan = 2 (ab + bc + ac)
    Cisim Köşegeni: e =Öa2 + b2 + c2
    Yüzey Köşegeni: f = Öa2 + b2


    Kare Prizma
    Tabanı kare olan prizmalara kare prizma denir. Yan yüzü dört adet eş dikdörtgenden oluşur.

    Hacim = a2 . h Yanal Alan = 4 . a . h
    Alan = 4.ah + 2.a2 Cisim köşegeni : e = Öa2 + a2 + h2


    Küp
    Bütün ayrıtları birbirine eşit olan dik prizmaya küp denir. Tüm yüzeyleri kare dir.

    Hacim = a3
    Alan = 6a2
    Kübün yüzey köşegenleri birbirine eşittir.
    Yüzey köşegeni: f = aÖ2
    Cisim köşegeni: e = aÖ3


    Üçgen Prizmalar
    Prizmalar tabanlarının şekline göre isim aldıklarından tabanı üçgen olan prizmalara üçgen prizma denir.
    Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir.

    a. Eşkenar Üçgen Prizma
    Eşkenar üçgen prizmanın tabanları eşkenar üçgendir. Yan yüzeyleri ise üç tane eş dikdörtgenden oluşur.Tabanı eşkenar üçgen olduğundan
    Tabanı eşkenar üçgen olduğundan
    Taban alanı Hacim Taban çevresi 3a olduğundan, yanal alan 3a.h dır.
    Buradan tüm alanı
    Tüm alan

    b. Dik Üçgen Prizma
    Dik üçgen prizmanın tabanı dik üçgendir. Yan yüzeyleri ise üç tane dikdörtgenden oluşur.
    Tabanı dik üçgen olduğundan
    Taban alanı = Hacim Taban çevresi a + b + c olduğundan,
    Yanal alan = (a + b + c) . h
    Tüm Alan = b . c + (a + b + c) . h


    Silindir
    Tabanı daire olan prizmalara silindir denir. Silindirin yan yüzü dikdörtgen biçimindedir. Dikdörtgenin bir kenarı yükseklik kadar, diğer kenarı ise taban dairesinin çevresi kadardır.
    Taban alanı= pr2

    Hacim= pr2h Taban çevresi 2pr olduğundan yanal alan 2prh olur.

    Tüm alan = 2prh+ 2pr Bir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir.

    Düzgün Çokgen Prizmalar
    Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.

    * Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
     

Sayfayı Paylaş